Definitions | ES, x:A B(x), x:A. B(x), x:AB(x), E, AbsInterface(A), x:A. B(x), s = t, f(a), b, (e <loc e'), P & Q, A, P Q, P Q, t T, Type, , <a, b>, es-interface-local-pred-bool, X(e), x.A(x), es-p-local-pred(es;P), e X, P Q, , let x,y = A in B(x;y), t.1, left + right, case b of inl(x) => s(x) | inr(y) => t(y), if b then t else f fi , {x:A| B(x)} , E(X), a:A fp B(a), strong-subtype(A;B), EqDecider(T), Unit, IdLnk, Id, EOrderAxioms(E; pred?; info), EState(T), Knd, x. t(x), x,y. t(x;y), kindcase(k; a.f(a); l,t.g(l;t) ), Msg(M), type List, , , val-axiom(E;V;M;info;pred?;init;Trans;Choose;Send;val;time), e < e', r s, constant_function(f;A;B), Top, ff, inr x , tt, inl x , False, True, A c B, loc(e), kind(e), SWellFounded(R(x;y)), pred!(e;e'), Void, x:A.B(x), S T, suptype(S; T), first(e), pred(e), last(P), WellFnd{i}(A;x,y.R(x;y)), x(s), {T}, (e < e'), P Q, Dec(P), b | a, a ~ b, a b, a <p b, a < b, x f y, xL. P(x), (xL.P(x)), r < s, q-rel(r;x), Outcome, (x l), l_disjoint(T;l1;l2), e loc e' , e c e', e<e'.P(e), ee'.P(e), e<e'. P(e), ee'.P(e), e[e1,e2).P(e), e[e1,e2).P(e), e[e1,e2].P(e), e[e1,e2].P(e), e(e1,e2].P(e), pred(e), first(e), loc(e), e(e1,e2].P(e), @e(xv), (last change to x before e), s ~ t, SQType(T) |